Schon frühe Flugpioniere erfuhren die Auswirkungen von Windshear: 1896 verunglückte Otto Lilienthal mit seinem „Fliegeapparat“ tödlich. Die Ursache war die, die auch viele Hangsegler verunglücken lässt: zu wenig Seitenruderkontrolle, um mit bodennahen turbulenten Windbedingungen fertig zu werden. Die Gebrüder Wright erkannten diese Problematik und leisteten durch die Einführung der Seitenrudersteuerung vermutlich den wichtigsten Beitrag für die frühe Luftfahrt.

Bis Ende der Sechziger Jahre ist Windscherung als Unfallursache überhaupt nicht festgestellt worden. Genauer gesagt: Windscherung war keine Gefahr für die Luftfahrt. Unfälle während des Starts oder der Landung, die vielleicht durch Windscherung verursacht wurden, sind unter dem Bereich „Pilot Error“ klassifiziert worden. Erst der Unfall der Eastern Airlines Maschine beim Anflug auf den Flughafen JFK in New York, Anfang der Siebziger Jahre, und die ausführliche Analyse durch Theodore Fujita, zeigte die Gefährlichkeit der Windscherung. Es war auch Fujita, der die Begriffe „Downburst“, „Downdraft“ und „Microburst“ in die wissenschaftliche Meteorologie einführte.

Windscherung (engl. Windshear) wird im Glossar der Meteorologie als die lokale Veränderung des Windvektors oder irgendeiner seiner Komponenten in einer gegebenen Richtung erklärt. Diese Veränderung kann sein: eine Änderung der Windgeschwindigkeit, der Windrichtung oder beider mit der Entfernung, welche im allgemeinen in vertikaler oder horizontaler Entfernung gemessen wird. Horizontale Windscherung ist die Änderung der Windrichtung oder der Windgeschwindigkeit in einer Ebene parallel zur Erdoberfläche , vertikale Windscherung ist die Änderung der Windrichtung oder Windgeschwindigkeit in einer Ebene senkrecht zur Erdoberfläche. In der Luftfahrt lässt sich die Windscherung in Bezug auf den Flugweg des Luftfahrzeuges wie folgt definieren: Windscherung ist die Variation des Windvektors oder seiner Komponenten längs der Flugbahn (Peter Krauspe, TU-Braunschweig).

Windscherung entsteht in der unteren Planetarischen Grenzschicht, im Zusammenhang mit Windströmungen über Gebirgen, mit Low Level Jets, Frontalzonen und Böenfronten (Gust-Fronts) .

Bei Flugzeugunfällen, die sich im Zusammenhang mit Gewittern ereigneten, zeigte sich, dass starke „Downdrafts“ bzw. „Downbursts“ unterhalb einer Gewitterwolke die Ursache waren.

 

 

Windshear - Gefährdungsbereiche (nach: FAA)

Im Zusammenhang mit Windscherung im Luftverkehr gibt es unterschiedliche Phänomene, die als Microburst und Macroburst bezeichnet werden und beide zu dem Oberbegriff „Downburst“ gehören.

Die Rede ist von Luftmassen, die fast wie in einem Trichter aus der Wolke in Richtung Erdboden stürzen (sinking air), und dort in alle Richtungen ausströmen, begleitet von starkem Wind. Diese so genannten „Downbursts“ entstehen meist im Zusammenhang mit schweren Gewittern. Unterschiedliche Faktoren sind an ihrer Entstehung beteiligt, so das Vorhandensein von trockenen Luftschichten im Gewitter, Abkühlung an der Wolkenuntergrenze, aber auch Verdunstungsvorgänge und die Existenz von Hagel in der Gewitterwolke.
Dabei wird unterschieden zwischen „Micro“ und „Macro“, was im Wesentlichen die Größenordnung dieser Erscheinung beschreibt.

Ein Microburst betrifft eine Fläche von ≤ 2½ Meilen ( ≤ 4 km) Durchmesser, mit Windgeschwindigkeiten von 168 MPH (ca. 270 km/h), und einer Dauer von 5 bis 15 Minuten.

Ein Macroburst betrifft eine Fläche von > 2 ½ Meilen ( > 4 km) Durchmesser, mit Windgeschwindigkeiten von ca. 134 MPH (ca. 215 km/h), und einer Dauer von 5 bis 30 Minuten. Man unterscheidet, je nach atmosphärischen Bedingungen, noch in „wet“ und „dry“ Microbursts und Macrobursts.

Die Gefährdung für den Luftverkehr besteht nicht nur in der Windgeschwindigkeit, sondern zusätzlich in der Änderung der Windrichtung, beim Ausströmen der Luft aus der Gewitterwolke.
Diese kurzen Illustrationen der NOAA für Start und Landung verdeutlichen die Gefährdung durch die unterschiedlichen Windrichtungen und Windgeschwindigkeiten

Start
(1) starker Gegenwind und eine verbesserte Flugzeugleistung
(2) gefolgt von einer kurzen Phase mit schwachem Gegenwind
(3) Vertikalkompenente des Windes nimmt zu (downburst)
(4) starker Rückenwind (durch ausströmende Luft)
(5) extreme Situation kurz vor dem Aufschlag

 

Downburst und seine Wirkung beim Start (nach: NOAA)

Landung
(1) Gegenwind,
(2) Gegenwind nimmt zu,
(3) Gegenwind läßt plötzlich stark nach,
(4) Vertikalkomponente des Windes, durch absinkende Luftbewegung, nimmt zu (downdraft)

 

Downburst und seine Wirkung bei der Landung (nach: NOAA)

Bereits 1981 haben die Forscher Fujita und Wakimoto die Bedeutung von “Downbursts” speziell für die Luftfahrt definiert: Danach ist ein „Downburst“, ein lokal starker Abwind mit Vertikalgeschwindigkeiten, die die Sinkgeschwindigkeit eines Flugzeugs während der Landephase noch übersteigen. Dabei wird die typische Sinkrate eines Passagierjets (Caracene und Maier, 1987), die in einer Höhe von ca. 91 m (300 ft) erreicht wird, mit 3,6 m/sec (12 ft/sec) angenommen. Das ist die ungefähre Flughöhe, auch „decision height“ genannt, in der der Flugkapitän entscheiden muss, ob die Landung weiter fortgesetzt oder abgebrochen wird. Sind die Windgeschwindigkeiten durch einen Downdraft zu dem Zeitpunkt tatsächlich höher als 3,6 m/sec, würde sich die Sinkrate mehr als verdoppeln.

Sogar das Präsidentenflugzeug (Air Force One), mit dem damaligen Präsidenten Ronald Reagan an Bord, entging 1983 nur knapp einem starken Microburst, der sich glücklicherweise erst kurz nach der Landung auf Andrews Air Force Base ereignete. Das Windmeßgerät auf dem Flughafen zeigte eine Böe von 150 MPH, also knapp über 240 km/h.

In der Zeit von 1975 bis 1985 haben sich mehrere schwere Flugzeugunfälle ereignet, bei denen Windscherung einer der wesentlichen Unfallursachen war.
Aber erst nach dem tragischen Unfall der Delta Airlines, konnte Windscherung als Unfallursache eindeutig nachgewiesen werden.

• Continental Airlines, Flight 426, Denver, 1975
• Allegheny Airlines, Flight 121, Philadelphia, 1976
• Continental Airlines, Flight 63, Tucson, 1977
• USAir, Flight 179, Dayton, 1982
• Pan American, Flight 759, New Orleans, 1982
• USAir, Flight 183, Detroit, 1984
• United Airlines, Flight 663, Denver, 1984
• Delta Airlines, Flight 191, Dallas Fort Worth, 1985

Das verunglückte Delta-Flugzeug vom Typ L-1011 war, anders als die meisten älteren Flugzeuge, mit einem digitalen Flugdatenschreiber ausgerüstet und konnte dadurch wesentlich mehr Parameter aufzeichnen als frühere analoge Geräte. Dr. Fujita konnte diese Daten zur Auswertung benutzen und zusammen mit den Winddaten, die am Flughafen gemessen wurden, nachweisen, dass ein Downburst diesen Unfall verursacht hat.

Erst daraufhin hat die FAA ein Windshear-Training für Piloten eingeführt. Außerdem wurden an 44 Flughäfen Windshear-Messsysteme installiert. Zusätzlich ist ein Netz von Doppler-Wetter-Radar-Geräten aufgebaut worden, die heutzutage sogar von vielen Fernsehstationen gekauft werden, um gefährliche Wettererscheinungen besser erkennen zu können.

Accidents & Incidents

zum Jahr > 2016  > 2015  > 2014  > 2013  > 2012  > 2011  > 2010

 

29. Oktober 2017

Ein Aer Lingus A 320, auf dem Weg von Dublin nach Prag, wurde beim Anflug auf Prag von einem Blitz getroffen. Für den Rückflug nach Dublin wurde eine Ersatzmaschine bereitgestellt.

28. Oktober 2017

Ein American Airlines A 319, auf dem Weg von Miami nach Mexico City, durchflog nach dem Start in Miami ein Gewitter. Die vermutliche Eisbildung an den Triebwerken führte zu starker Vibration. Die Vibration stoppte nach dem runter- und hochfahren der Treibwerke.

25. Oktober 2017

Ein SAS Flug von Stockholm, Schweden, nach Turku, Finnland, rutschte auf der vereisten Landebahn in Turku bis zum Ende der Landebahn und drehte sich dann um 180°.

22.Oktober 2017

Ein Air Canada A 320 erhielt die Freigabe zur Landung auf dem Flughafen von San Francisco. Kurz danach wies der Fluglotse die Piloten an, die Landung abzubrechen, da die Landebahn noch blockiert sei. Die Air Canada Piloten setzten jedoch den Landeanflug fort und landeten. Zur Begründung gaben sie an, dass es Funkprobleme gegeben hätte.

15. Oktober 2017

Ein Air Asia Flug, auf dem Weg von Perth, Australien, nach Bali, erlitt in einer Flughöhe von 34.000 Fuß einen Druckverlust. Das Flugzeug sank auf eine sichere Flughöhe von 10.000 Fuß innerhalb von 9 Minuten. Die Maschine kehrte nach Perth zurück.

09. Oktober 2017

Ein Cathay Pacific Airbus A350-900, auf dem Weg von Hongkong nach Brisbane, geriet nahe Manila in schwere Turbulenzen, in einer Flughöhe von 29.000 Fuß. Das Flugzeug landete außerplanmäßig in Manila. Sechs Flugbegleiter und ein Passagier erlitten Verletzungen durch die Turbulenzen.

25. September 2017

Eine United Airlines Boeing B 737-900, auf dem Weg von vancouver, kanada, nach Chicago, USA, musste beim Anflug auf den Flughafen von Chicago einem Segelflugzeug ausweichen. Die 737 flog eine sehr enge 360° Kurve, um eine Kollision zu vermeiden.

09. September 2017

Eine Air Europa ATR 72-500, auf dem Weg von Alicante nach Madrid, Spanien, geriet während des Steigfluges in Vereisungsbedingungen. Das Flugzeug erlitt einen Strömungsabriss, konnte aber sicher in Madrid landen.

06. Juli 2017

Delta Airlines Flug 129, von Seattle nach Beijing, China, kehrte zum Abflughafen Seattle zurück, weil ein Passagier in der Ersten-Klasse versuchte, die Flugzeugtür zu öffnen. Er schlug einer Flugbegleiterin mit der Faust ins Gesicht und einem anderen Passagier mit einer Weinflasche auf den Kopf. Mit Hilfe weiterer Passagiere wurde der Mann an einen Sitz gefesselt. Der CNN-Bericht  hier 

Weiterlesen ...